Kazan Federal University Digital Repository

Algebraic characterization of differential geometric structures serge skryabin

Show simple item record

dc.contributor.author Neeb K.
dc.date.accessioned 2018-09-18T20:11:12Z
dc.date.available 2018-09-18T20:11:12Z
dc.date.issued 2008
dc.identifier.issn 0949-5932
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/137371
dc.description.abstract We consider purely algebraic data generalizing the notion of a smooth differentiable manifold. It is given by a triple X, R, W where X is a set, R a commutative associative algebra over the ground field, W a Lie subalgebra and an i?-submodule in the derivation algebra of R. Geometric structures studied in differential geometry can be defined on such triples. The main result answers the question about the existence and the uniqueness of an L -invariant unimodular, hamiltonian, contact, or pseudo-riemannian structure in terms of the isotropy subalgebras of points of X. The second major result generalizes a classical fact which says that the Lie algebra of infinitesimal automorphisms of a Riemann metric on a connected manifold is finite dimensional. © 2008 Heldermann Verlag.
dc.relation.ispartofseries Journal of Lie Theory
dc.subject Contact structures
dc.subject Hamiltonian structures
dc.subject Riemann pseudometrics
dc.subject Unimodular structures
dc.title Algebraic characterization of differential geometric structures serge skryabin
dc.type Article
dc.relation.ispartofseries-issue 4
dc.relation.ispartofseries-volume 18
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 775
dc.source.id SCOPUS09495932-2008-18-4-SID67149086701


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics