Показать сокращенную информацию
dc.contributor.author | Batyrshin I. | |
dc.date.accessioned | 2018-09-18T20:11:06Z | |
dc.date.available | 2018-09-18T20:11:06Z | |
dc.date.issued | 2009 | |
dc.identifier.issn | 0942-5616 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/137356 | |
dc.description.abstract | We show that non-isolated from below 2-c.e. Q-degrees are dense in the structure of c.e. Q-degrees. We construct a 2-c.e. Q-degree, which can't be isolated from below not only by c.e. Q-degrees, but by any Q-degree. We also prove that below any c.e. Q-degree there is a 2-c.e. Q-degree, which is non-isolated from below and from above. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | |
dc.relation.ispartofseries | Mathematical Logic Quarterly | |
dc.subject | 2-c.e. degrees | |
dc.subject | Computably-enumerable degrees | |
dc.subject | Isolated degrees | |
dc.subject | Quasi-reducibility | |
dc.title | Non-isolated quasi-degrees | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 6 | |
dc.relation.ispartofseries-volume | 55 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 587 | |
dc.source.id | SCOPUS09425616-2009-55-6-SID76749121888 |