dc.contributor.author |
Batyrshin I. |
|
dc.date.accessioned |
2018-09-18T20:11:06Z |
|
dc.date.available |
2018-09-18T20:11:06Z |
|
dc.date.issued |
2009 |
|
dc.identifier.issn |
0942-5616 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/137356 |
|
dc.description.abstract |
We show that non-isolated from below 2-c.e. Q-degrees are dense in the structure of c.e. Q-degrees. We construct a 2-c.e. Q-degree, which can't be isolated from below not only by c.e. Q-degrees, but by any Q-degree. We also prove that below any c.e. Q-degree there is a 2-c.e. Q-degree, which is non-isolated from below and from above. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
|
dc.relation.ispartofseries |
Mathematical Logic Quarterly |
|
dc.subject |
2-c.e. degrees |
|
dc.subject |
Computably-enumerable degrees |
|
dc.subject |
Isolated degrees |
|
dc.subject |
Quasi-reducibility |
|
dc.title |
Non-isolated quasi-degrees |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
6 |
|
dc.relation.ispartofseries-volume |
55 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
587 |
|
dc.source.id |
SCOPUS09425616-2009-55-6-SID76749121888 |
|