Показать сокращенную информацию
dc.contributor.author | Konnov I. | |
dc.contributor.author | Dyabilkin D. | |
dc.date.accessioned | 2018-09-18T20:10:23Z | |
dc.date.available | 2018-09-18T20:10:23Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0925-5001 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/137244 | |
dc.description.abstract | We consider a general equilibrium problem in a finite-dimensional space setting and propose a newcoercivity condition for existence of solutions.We also showthat it enables us to create a broad family of regularization methods with preserving well-definiteness and convergence of the iteration sequence without additional monotonicity assumptions. Some examples of applications are also given. © Springer Science+Business Media, LLC. 2010. | |
dc.relation.ispartofseries | Journal of Global Optimization | |
dc.subject | Coercivity conditions | |
dc.subject | Equilibrium problems | |
dc.subject | Existence of solutions | |
dc.subject | Nonmonotone bifunctions | |
dc.subject | Regularization method | |
dc.title | Nonmonotone equilibrium problems: Coercivity conditions and weak regularization | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 4 | |
dc.relation.ispartofseries-volume | 49 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 575 | |
dc.source.id | SCOPUS09255001-2011-49-4-SID79956155400 |