dc.contributor.author |
Konnov I. |
|
dc.contributor.author |
Dyabilkin D. |
|
dc.date.accessioned |
2018-09-18T20:10:23Z |
|
dc.date.available |
2018-09-18T20:10:23Z |
|
dc.date.issued |
2011 |
|
dc.identifier.issn |
0925-5001 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/137244 |
|
dc.description.abstract |
We consider a general equilibrium problem in a finite-dimensional space setting and propose a newcoercivity condition for existence of solutions.We also showthat it enables us to create a broad family of regularization methods with preserving well-definiteness and convergence of the iteration sequence without additional monotonicity assumptions. Some examples of applications are also given. © Springer Science+Business Media, LLC. 2010. |
|
dc.relation.ispartofseries |
Journal of Global Optimization |
|
dc.subject |
Coercivity conditions |
|
dc.subject |
Equilibrium problems |
|
dc.subject |
Existence of solutions |
|
dc.subject |
Nonmonotone bifunctions |
|
dc.subject |
Regularization method |
|
dc.title |
Nonmonotone equilibrium problems: Coercivity conditions and weak regularization |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
4 |
|
dc.relation.ispartofseries-volume |
49 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
575 |
|
dc.source.id |
SCOPUS09255001-2011-49-4-SID79956155400 |
|