Электронный архив

Non-Fickian mass transport in fractured porous media

Показать сокращенную информацию

dc.contributor.author Fomin S.
dc.contributor.author Chugunov V.
dc.contributor.author Hashida T.
dc.date.accessioned 2018-09-18T20:08:47Z
dc.date.available 2018-09-18T20:08:47Z
dc.date.issued 2011
dc.identifier.issn 0309-1708
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/136959
dc.description.abstract The paper provides an introduction to fundamental concepts of mathematical modeling of mass transport in fractured porous heterogeneous rocks. Keeping aside many important factors that can affect mass transport in subsurface, our main concern is the multi-scale character of the rock formation, which is constituted by porous domains dissected by the network of fractures. Taking into account the well-documented fact that porous rocks can be considered as a fractal medium and assuming that sizes of pores vary significantly (i.e. have different characteristic scales), the fractional-order differential equations that model the anomalous diffusive mass transport in such type of domains are derived and justified analytically. Analytical solutions of some particular problems of anomalous diffusion in the fractal media of various geometries are obtained. Extending this approach to more complex situation when diffusion is accompanied by advection, solute transport in a fractured porous medium is modeled by the advection-dispersion equation with fractional time derivative. In the case of confined fractured porous aquifer, accounting for anomalous non-Fickian diffusion in the surrounding rock mass, the adopted approach leads to introduction of an additional fractional time derivative in the equation for solute transport. The closed-form solutions for concentrations in the aquifer and surrounding rocks are obtained for the arbitrary time-dependent source of contamination located in the inlet of the aquifer. Based on these solutions, different regimes of contamination of the aquifers with different physical properties can be readily modeled and analyzed. © 2010 Elsevier Ltd.
dc.relation.ispartofseries Advances in Water Resources
dc.subject Diffusion
dc.subject Fractal
dc.subject Fractional derivative
dc.subject Fracture
dc.subject Porous medium
dc.title Non-Fickian mass transport in fractured porous media
dc.type Article
dc.relation.ispartofseries-issue 2
dc.relation.ispartofseries-volume 34
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 205
dc.source.id SCOPUS03091708-2011-34-2-SID78751603846


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика