Kazan Federal University Digital Repository

Svd-lda: Topic modeling for full-text recommender systems

Show simple item record

dc.contributor.author Nikolenko S.
dc.date.accessioned 2018-09-18T20:08:26Z
dc.date.available 2018-09-18T20:08:26Z
dc.date.issued 2015
dc.identifier.issn 0302-9743
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/136904
dc.description.abstract © Springer International Publishing Switzerland 2015. In recommender systems, matrix decompositions, in particular singular value decomposition (SVD), represent users and items as vectors of features and allow for additional terms in the decomposition to account for other available information. In text mining, topic modeling, in particular latent Dirichlet allocation (LDA), are designed to extract topical content of a large corpus of documents. In this work, we present a unified SVD-LDA model that aims to improve SVD-based recommendations for items with textual content with topic modeling of this content. We develop a training algorithm for SVD-LDA based on a first order approximation to Gibbs sampling and show significant improvements in recommendation quality.
dc.relation.ispartofseries Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dc.title Svd-lda: Topic modeling for full-text recommender systems
dc.type Conference Paper
dc.relation.ispartofseries-volume 9414
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 67
dc.source.id SCOPUS03029743-2015-9414-SID84952651932


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics