Показать сокращенную информацию
dc.contributor.author | Avkhadiev F. | |
dc.contributor.author | Wirths K. | |
dc.date.accessioned | 2018-09-18T20:07:11Z | |
dc.date.available | 2018-09-18T20:07:11Z | |
dc.date.issued | 2007 | |
dc.identifier.issn | 0213-2230 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/136686 | |
dc.description.abstract | Let Ω and ∏ be two simply connected proper subdomains of the complex plane ℂ. We are concerned with the set A(Ω, ∏) of functions f : Ω → ∏ holomorphic on Ω and we prove estimates for |f(n)(z)|, f ∈ A(Ω, Ω),z ∈ Ω, of the following type. Let λΩ(z) and λ ∏ (w) denote the density of the Poincaré metric with curvature and λ = -4 of Ω at z and of w, respectively. Then for any pair (Ω, ∏) of convex domains, f ∈ A(Ω, ∏), z ∈ Ω, and n ≥ 2 the inequality |f(n)(z)|/n! ≤ 2 n-1(λΩ(z))n/λ ∏(f(z)) is valid. The constant 2n-1 is best possible for any pair (Ω, ∏) of convex domains. For any pair (Ω, ∏), where Ω is convex and ∏ linearly accessible, f, z, n as above, we prove |f(n)(z)|/(n+1)! ≤ 2 n-2(λΩ(z))n/λ∏(f(z)). The constant 2n - 2 is best possible for certain admissible pairs (Ω, ∏)). These considerations lead to a new, nonanalytic, characterization of bijective convex functions h : Δ → Ω not using the second derivative of h. | |
dc.relation.ispartofseries | Revista Matematica Iberoamericana | |
dc.subject | Bounded functions | |
dc.subject | Close-to-convex functions | |
dc.subject | Convex domain | |
dc.subject | Convex functions | |
dc.subject | Inverse functions | |
dc.subject | Linear accessible domain | |
dc.subject | Taylor coefficients | |
dc.title | The punishing factors for convex pairs are 2n-1 | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 3 | |
dc.relation.ispartofseries-volume | 23 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 847 | |
dc.source.id | SCOPUS02132230-2007-23-3-SID43049100413 |