Показать сокращенную информацию
dc.contributor.author | Tikhonov O. | |
dc.date.accessioned | 2018-09-18T20:05:46Z | |
dc.date.available | 2018-09-18T20:05:46Z | |
dc.date.issued | 2006 | |
dc.identifier.issn | 0024-3795 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/136453 | |
dc.description.abstract | We prove that a real-valued function f defined on an interval S in R is matrix convex if and only if for any natural k, for all families of positive operators { Ai }i = 1 k in a finite-dimensional Hilbert space, such that ∑i = 1 k Ai = 1, and arbitrary numbers xi ∈ S, the inequality{A formula is presented}holds true. © 2006 Elsevier Inc. All rights reserved. | |
dc.relation.ispartofseries | Linear Algebra and Its Applications | |
dc.subject | Matrix convex function | |
dc.subject | The Neumark theorem | |
dc.title | A note on definition of matrix convex functions | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2-3 | |
dc.relation.ispartofseries-volume | 416 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 773 | |
dc.source.id | SCOPUS00243795-2006-416-23-SID33646903744 |