dc.contributor.author |
Tikhonov O. |
|
dc.date.accessioned |
2018-09-18T20:05:46Z |
|
dc.date.available |
2018-09-18T20:05:46Z |
|
dc.date.issued |
2006 |
|
dc.identifier.issn |
0024-3795 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/136453 |
|
dc.description.abstract |
We prove that a real-valued function f defined on an interval S in R is matrix convex if and only if for any natural k, for all families of positive operators { Ai }i = 1 k in a finite-dimensional Hilbert space, such that ∑i = 1 k Ai = 1, and arbitrary numbers xi ∈ S, the inequality{A formula is presented}holds true. © 2006 Elsevier Inc. All rights reserved. |
|
dc.relation.ispartofseries |
Linear Algebra and Its Applications |
|
dc.subject |
Matrix convex function |
|
dc.subject |
The Neumark theorem |
|
dc.title |
A note on definition of matrix convex functions |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
2-3 |
|
dc.relation.ispartofseries-volume |
416 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
773 |
|
dc.source.id |
SCOPUS00243795-2006-416-23-SID33646903744 |
|