Kazan Federal University Digital Repository

A note on definition of matrix convex functions

Show simple item record

dc.contributor.author Tikhonov O.
dc.date.accessioned 2018-09-18T20:05:46Z
dc.date.available 2018-09-18T20:05:46Z
dc.date.issued 2006
dc.identifier.issn 0024-3795
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/136453
dc.description.abstract We prove that a real-valued function f defined on an interval S in R is matrix convex if and only if for any natural k, for all families of positive operators { Ai }i = 1 k in a finite-dimensional Hilbert space, such that ∑i = 1 k Ai = 1, and arbitrary numbers xi ∈ S, the inequality{A formula is presented}holds true. © 2006 Elsevier Inc. All rights reserved.
dc.relation.ispartofseries Linear Algebra and Its Applications
dc.subject Matrix convex function
dc.subject The Neumark theorem
dc.title A note on definition of matrix convex functions
dc.type Article
dc.relation.ispartofseries-issue 2-3
dc.relation.ispartofseries-volume 416
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 773
dc.source.id SCOPUS00243795-2006-416-23-SID33646903744


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics