Показать сокращенную информацию
dc.contributor.author | Arslanov M. | |
dc.contributor.author | Kalimullin I. | |
dc.contributor.author | Lempp S. | |
dc.date.accessioned | 2018-09-18T20:05:43Z | |
dc.date.available | 2018-09-18T20:05:43Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 0022-4812 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/136447 | |
dc.description.abstract | We prove that the degree structures of the d.c.e. and the 3-c.e. Turing degrees are not elementarily equivalent, thus refuting a conjecture of Downey. More specifically, we show that the following statement fails in the former but holds in the latter structure: There are degrees f > e > d > 0 such that any degree u < f is either comparable with both e and d, or incomparable with both. © 2010. Association for Symbolic Logic. | |
dc.relation.ispartofseries | Journal of Symbolic Logic | |
dc.subject | D.c.e. degrees | |
dc.subject | Downey's conjecture | |
dc.subject | N.-c.e. degrees | |
dc.title | On downey's conjecture | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 75 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 401 | |
dc.source.id | SCOPUS00224812-2010-75-2-SID77954334708 |