dc.contributor.author |
Arslanov M. |
|
dc.contributor.author |
Kalimullin I. |
|
dc.contributor.author |
Lempp S. |
|
dc.date.accessioned |
2018-09-18T20:05:43Z |
|
dc.date.available |
2018-09-18T20:05:43Z |
|
dc.date.issued |
2010 |
|
dc.identifier.issn |
0022-4812 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/136447 |
|
dc.description.abstract |
We prove that the degree structures of the d.c.e. and the 3-c.e. Turing degrees are not elementarily equivalent, thus refuting a conjecture of Downey. More specifically, we show that the following statement fails in the former but holds in the latter structure: There are degrees f > e > d > 0 such that any degree u < f is either comparable with both e and d, or incomparable with both. © 2010. Association for Symbolic Logic. |
|
dc.relation.ispartofseries |
Journal of Symbolic Logic |
|
dc.subject |
D.c.e. degrees |
|
dc.subject |
Downey's conjecture |
|
dc.subject |
N.-c.e. degrees |
|
dc.title |
On downey's conjecture |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
2 |
|
dc.relation.ispartofseries-volume |
75 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
401 |
|
dc.source.id |
SCOPUS00224812-2010-75-2-SID77954334708 |
|