Show simple item record

dc.contributor.author Arslanov M.
dc.contributor.author Kalimullin I.
dc.contributor.author Lempp S.
dc.date.accessioned 2018-09-18T20:05:43Z
dc.date.available 2018-09-18T20:05:43Z
dc.date.issued 2010
dc.identifier.issn 0022-4812
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/136447
dc.description.abstract We prove that the degree structures of the d.c.e. and the 3-c.e. Turing degrees are not elementarily equivalent, thus refuting a conjecture of Downey. More specifically, we show that the following statement fails in the former but holds in the latter structure: There are degrees f > e > d > 0 such that any degree u < f is either comparable with both e and d, or incomparable with both. © 2010. Association for Symbolic Logic.
dc.relation.ispartofseries Journal of Symbolic Logic
dc.subject D.c.e. degrees
dc.subject Downey's conjecture
dc.subject N.-c.e. degrees
dc.title On downey's conjecture
dc.type Article
dc.relation.ispartofseries-issue 2
dc.relation.ispartofseries-volume 75
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 401
dc.source.id SCOPUS00224812-2010-75-2-SID77954334708


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics