dc.contributor.author |
Avkhadiev F. |
|
dc.contributor.author |
Wirths K. |
|
dc.date.accessioned |
2018-09-18T20:05:13Z |
|
dc.date.available |
2018-09-18T20:05:13Z |
|
dc.date.issued |
2012 |
|
dc.identifier.issn |
0022-247X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/136374 |
|
dc.description.abstract |
We study the best possible constants c(n) in the Brezis-Marcus inequalities for u∈H01(Bn) in balls Bn={x∈Rn:|x-x0|<ρ}. The quantity c(1) is known by our paper [F.G. Avkhadiev, K.-J. Wirths, Unified Poincaré and Hardy inequalities with sharp constants for convex domains, ZAMM Z. Angew. Math. Mech. 87 (8-9) 26 (2007) 632-642]. In the present paper we prove the estimate c(2)≥2 and the assertion limn→∞c(n)n2=14, which gives that the known lower estimates in [G. Barbatis, S. Filippas, and A. Tertikas in Comm. Cont. Math. 5 (2003), no. 6, 869-881] for c(n),n≥3, are asymptotically sharp as n→∞. Also, for the 3-dimensional ball B30={x∈R3:|x|<1} we obtain a new Brezis-Marcus type inequality which contains two parameters m∈(0,∞), ν∈(0,1/m) and has the following form ∫B30|∇u(x)|2dx≥14∫B30{1-ν2m2(1-|x|)2+m2jν2(1-|x|)2-m}|u(x)|2dx, where jν is the first zero of the Bessel function Jν of order ν and the constants 1-ν2m24andm2jν24 are sharp for all admissible values of parameters m and ν. © 2012 Elsevier Ltd. |
|
dc.relation.ispartofseries |
Journal of Mathematical Analysis and Applications |
|
dc.subject |
Bessel functions |
|
dc.subject |
Brezis-Marcus inequalities |
|
dc.subject |
Hardy type inequality |
|
dc.title |
On the best constants for the Brezis-Marcus inequalities in balls |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
2 |
|
dc.relation.ispartofseries-volume |
396 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
473 |
|
dc.source.id |
SCOPUS0022247X-2012-396-2-SID84865570331 |
|