Показать сокращенную информацию
dc.contributor.author | Maklakov D. | |
dc.contributor.author | Petrov A. | |
dc.date.accessioned | 2018-09-18T20:05:03Z | |
dc.date.available | 2018-09-18T20:05:03Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0022-1120 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/136345 | |
dc.description.abstract | © 2015 Cambridge University Press. In this work we have obtained exact analytical formulae expressing the wave resistance of a two-dimensional body by the parameters of the downstream non-breaking waves. The body moves horizontally at a constant speed c in a channel of finite depth h. We have analysed the relationships between the parameters of the upstream flow and the downstream waves. Making use of some results by Keady & Norbury (J. Fluid Mech., vol. 70, 1975, pp. 663-671) and Benjamin (J. Fluid Mech., vol. 295, 1995, pp. 337-356), we have rigorously proved that realistic steady free-surface flows with a positive wave resistance exist only if the upstream flow is subcritical, i.e. the Froude number Fr = c/√gh < 1. For all solutions with downstream waves obtained by a perturbation of a supercritical upstream uniform flow the wave resistance is negative. Applying a numerical technique, we have calculated accurate values of the wave resistance depending on the wavelength, amplitude and mean depth. | |
dc.relation.ispartofseries | Journal of Fluid Mechanics | |
dc.subject | channel flow | |
dc.subject | surface gravity waves | |
dc.subject | waves/free-surface flows | |
dc.title | On steady non-breaking downstream waves and the wave resistance | |
dc.type | Article | |
dc.relation.ispartofseries-volume | 776 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 290 | |
dc.source.id | SCOPUS00221120-2015-776-SID84937047180 |