dc.contributor.author |
Skryabin S. |
|
dc.date.accessioned |
2018-09-18T20:04:31Z |
|
dc.date.available |
2018-09-18T20:04:31Z |
|
dc.date.issued |
2011 |
|
dc.identifier.issn |
0021-8693 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/136255 |
|
dc.description.abstract |
The coring stabilizer Stab(P) is introduced for any prime ideal P of a right H-comodule algebra A such that the factor ring A/P is either right or left Goldie. This notion is used to obtain Hopf algebraic analogs of two category equivalences associated with a homogeneous space. The category of linearized quasicoherent sheaves on a noncommutative homogeneous space is interpreted as a suitable quotient category of the category of Hopf modules. Birational invariance of such quotient categories is proved. It is shown that for a birational H-coequivariant extension B of A properly defined subsets of prime ideals of A and B correspond to each other bijectively. © 2011 Elsevier Inc. |
|
dc.relation.ispartofseries |
Journal of Algebra |
|
dc.subject |
Birational extensions |
|
dc.subject |
Comodule algebras |
|
dc.subject |
Corings |
|
dc.subject |
Hopf algebras |
|
dc.subject |
Hopf modules |
|
dc.subject |
Stabilizers |
|
dc.title |
Coring stabilizers for a Hopf algebra coaction |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
1 |
|
dc.relation.ispartofseries-volume |
338 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
71 |
|
dc.source.id |
SCOPUS00218693-2011-338-1-SID79957563501 |
|