Показать сокращенную информацию
dc.contributor.author | Matvejchuk M. | |
dc.date.accessioned | 2018-09-18T20:04:00Z | |
dc.date.available | 2018-09-18T20:04:00Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0020-7748 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/136173 | |
dc.description.abstract | Let H be the complex Hilbert space with conjugation J. Denote by B(H)co the quantum logic of all J-projections on H. A non-zero function μ({dot operator}):=tr(A({dot operator})) on B(H)co is said to be a regular measure. Here A is a trace class operator. It is shown that there exists a J-projection p such that. We give a description of the hermitian and skew hermitian regular measures. © 2011 Springer Science+Business Media, LLC. | |
dc.relation.ispartofseries | International Journal of Theoretical Physics | |
dc.subject | Conjugation | |
dc.subject | Hilbert space | |
dc.subject | Idempotent | |
dc.subject | Measure | |
dc.subject | Projection | |
dc.title | Any Regular Measure on Conjugation Logic is a Complex Measure | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 51 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 259 | |
dc.source.id | SCOPUS00207748-2012-51-1-SID84155195229 |