dc.contributor.author |
Matvejchuk M. |
|
dc.date.accessioned |
2018-09-18T20:04:00Z |
|
dc.date.available |
2018-09-18T20:04:00Z |
|
dc.date.issued |
2012 |
|
dc.identifier.issn |
0020-7748 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/136173 |
|
dc.description.abstract |
Let H be the complex Hilbert space with conjugation J. Denote by B(H)co the quantum logic of all J-projections on H. A non-zero function μ({dot operator}):=tr(A({dot operator})) on B(H)co is said to be a regular measure. Here A is a trace class operator. It is shown that there exists a J-projection p such that. We give a description of the hermitian and skew hermitian regular measures. © 2011 Springer Science+Business Media, LLC. |
|
dc.relation.ispartofseries |
International Journal of Theoretical Physics |
|
dc.subject |
Conjugation |
|
dc.subject |
Hilbert space |
|
dc.subject |
Idempotent |
|
dc.subject |
Measure |
|
dc.subject |
Projection |
|
dc.title |
Any Regular Measure on Conjugation Logic is a Complex Measure |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
1 |
|
dc.relation.ispartofseries-volume |
51 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
259 |
|
dc.source.id |
SCOPUS00207748-2012-51-1-SID84155195229 |
|