dc.contributor.author |
Tikhonov O. |
|
dc.contributor.author |
Veselova L. |
|
dc.date.accessioned |
2018-09-18T20:03:53Z |
|
dc.date.available |
2018-09-18T20:03:53Z |
|
dc.date.issued |
2015 |
|
dc.identifier.issn |
0019-3577 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/136152 |
|
dc.description.abstract |
© 2014 Royal Dutch Mathematical Society (KWG). Let τ be a tracial normal state on a von Neumann algebra, L1(τ) be the space of integrable self-adjoint operators, and S be the space of self-adjoint measurable operators. We prove that every positive linear operator from an ordered Banach space to S can be factorized through L1(τ). |
|
dc.relation.ispartofseries |
Indagationes Mathematicae |
|
dc.subject |
Factorization of operators |
|
dc.subject |
Measurable operator |
|
dc.subject |
Positive operator |
|
dc.subject |
Tracial normal state |
|
dc.subject |
Von Neumann algebra |
|
dc.title |
A non-commutative version of Nikishin's theorem |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
1 |
|
dc.relation.ispartofseries-volume |
26 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
142 |
|
dc.source.id |
SCOPUS00193577-2015-26-1-SID84922523009 |
|