Показать сокращенную информацию
dc.contributor.author | Arslanov M. | |
dc.contributor.author | Omanadze R. | |
dc.date.accessioned | 2018-09-18T20:03:53Z | |
dc.date.available | 2018-09-18T20:03:53Z | |
dc.date.issued | 2008 | |
dc.identifier.issn | 0019-2082 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/136151 | |
dc.description.abstract | In this paper we study Q-degrees of n-computably enumerable (n-c.e.) sets. It is proved that n-c.e. sets form a true hierarchy in terms of Q-degrees, and that for any n ≥ 1 there exists a 2n-c.e. Q- degree which bounds no noncomputable c.e. Q-degree, but any (2n + l)- c.e. non 2n-c.e. Q-degree bounds a c.e. noncomputable Q-degree. Studying weak density properties of n-c.e. Q-degrees, we prove that for any n ≥ 1, properly n-c.e. Q-degrees are dense in the ordering of c.e. Q-degrees, but there exist c.e. sets A and B such that A - B <Q A ≡Q φ′, and there are no c.e. sets for which the Q-degrees are strongly between A - B and A. ©2007 University of Illinois. | |
dc.relation.ispartofseries | Illinois Journal of Mathematics | |
dc.title | Q-degrees of n-C.E. sets | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 4 | |
dc.relation.ispartofseries-volume | 51 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1189 | |
dc.source.id | SCOPUS00192082-2008-51-4-SID50949092684 |