dc.contributor.author |
Arslanov M. |
|
dc.contributor.author |
Omanadze R. |
|
dc.date.accessioned |
2018-09-18T20:03:53Z |
|
dc.date.available |
2018-09-18T20:03:53Z |
|
dc.date.issued |
2008 |
|
dc.identifier.issn |
0019-2082 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/136151 |
|
dc.description.abstract |
In this paper we study Q-degrees of n-computably enumerable (n-c.e.) sets. It is proved that n-c.e. sets form a true hierarchy in terms of Q-degrees, and that for any n ≥ 1 there exists a 2n-c.e. Q- degree which bounds no noncomputable c.e. Q-degree, but any (2n + l)- c.e. non 2n-c.e. Q-degree bounds a c.e. noncomputable Q-degree. Studying weak density properties of n-c.e. Q-degrees, we prove that for any n ≥ 1, properly n-c.e. Q-degrees are dense in the ordering of c.e. Q-degrees, but there exist c.e. sets A and B such that A - B <Q A ≡Q φ′, and there are no c.e. sets for which the Q-degrees are strongly between A - B and A. ©2007 University of Illinois. |
|
dc.relation.ispartofseries |
Illinois Journal of Mathematics |
|
dc.title |
Q-degrees of n-C.E. sets |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
4 |
|
dc.relation.ispartofseries-volume |
51 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1189 |
|
dc.source.id |
SCOPUS00192082-2008-51-4-SID50949092684 |
|