Электронный архив

On the convergence of solutions for a class of nonconformal FEM schemes for quasilinear elliptic equations

Показать сокращенную информацию

dc.contributor.author Fedotov E.
dc.date.accessioned 2018-09-18T20:03:11Z
dc.date.available 2018-09-18T20:03:11Z
dc.date.issued 2013
dc.identifier.issn 0012-2661
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/136084
dc.description.abstract We consider versions of the nonconformal finite element method for the approximation to a second-order quasilinear elliptic equation in divergence form. For the construction of grid schemes, we use an approach used earlier for the nonstationary convection-diffusion equation and based on the Galerkin-Petrov limit approximation to the mixed statement of the original problem. The accuracy of solutions of nonconformal schemes with triangular linear finite elements is estimated in the absence of interior penalty terms, which are usually used in methods close to DG-methods for the stabilization of the scheme solution. © 2013 Pleiades Publishing, Ltd.
dc.relation.ispartofseries Differential Equations
dc.title On the convergence of solutions for a class of nonconformal FEM schemes for quasilinear elliptic equations
dc.type Article
dc.relation.ispartofseries-issue 9
dc.relation.ispartofseries-volume 49
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1176
dc.source.id SCOPUS00122661-2013-49-9-SID84887906297


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика