Показать сокращенную информацию
dc.contributor.author | Solov'ev S. | |
dc.date.accessioned | 2018-09-18T20:03:10Z | |
dc.date.available | 2018-09-18T20:03:10Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0012-2661 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/136079 | |
dc.description.abstract | A variational sign-indefinite eigenvalue problem in an infinite-dimensional Hilbert space is approximated by a problem in a finite-dimensional subspace. We analyze the convergence and accuracy of approximate eigenvalues and eigenelements. The general results are illustrated by a sample scheme of the finite-element method with numerical integration for a one-dimensional sign-indefinite second-order differential eigenvalue problem. © 2012 Pleiades Publishing, Ltd. | |
dc.relation.ispartofseries | Differential Equations | |
dc.title | Approximation of sign-indefinite spectral problems | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 7 | |
dc.relation.ispartofseries-volume | 48 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1028 | |
dc.source.id | SCOPUS00122661-2012-48-7-SID84864389645 |