dc.contributor.author |
Solov'ev S. |
|
dc.date.accessioned |
2018-09-18T20:03:10Z |
|
dc.date.available |
2018-09-18T20:03:10Z |
|
dc.date.issued |
2012 |
|
dc.identifier.issn |
0012-2661 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/136079 |
|
dc.description.abstract |
A variational sign-indefinite eigenvalue problem in an infinite-dimensional Hilbert space is approximated by a problem in a finite-dimensional subspace. We analyze the convergence and accuracy of approximate eigenvalues and eigenelements. The general results are illustrated by a sample scheme of the finite-element method with numerical integration for a one-dimensional sign-indefinite second-order differential eigenvalue problem. © 2012 Pleiades Publishing, Ltd. |
|
dc.relation.ispartofseries |
Differential Equations |
|
dc.title |
Approximation of sign-indefinite spectral problems |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
7 |
|
dc.relation.ispartofseries-volume |
48 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1028 |
|
dc.source.id |
SCOPUS00122661-2012-48-7-SID84864389645 |
|