Показать сокращенную информацию
dc.contributor.author | Solov'ev S. | |
dc.date.accessioned | 2018-09-18T20:03:08Z | |
dc.date.available | 2018-09-18T20:03:08Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0012-2661 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/136074 | |
dc.description.abstract | A variational positive semidefinite spectral problem in an infinite-dimensional Hilbert space is approximated by a problem in a finite-dimensional subspace. We study the convergence and accuracy of the approximate solutions. General results are illustrated by an example dealing with the scheme of the finite-element method with numerical integration for a one-dimensional second-order differential spectral problem. © 2011 Pleiades Publishing, Ltd. | |
dc.relation.ispartofseries | Differential Equations | |
dc.title | Approximation of positive semidefinite spectral problems | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 8 | |
dc.relation.ispartofseries-volume | 47 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1188 | |
dc.source.id | SCOPUS00122661-2011-47-8-SID80054001329 |