dc.contributor.author |
Solov'ev S. |
|
dc.date.accessioned |
2018-09-18T20:03:08Z |
|
dc.date.available |
2018-09-18T20:03:08Z |
|
dc.date.issued |
2011 |
|
dc.identifier.issn |
0012-2661 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/136074 |
|
dc.description.abstract |
A variational positive semidefinite spectral problem in an infinite-dimensional Hilbert space is approximated by a problem in a finite-dimensional subspace. We study the convergence and accuracy of the approximate solutions. General results are illustrated by an example dealing with the scheme of the finite-element method with numerical integration for a one-dimensional second-order differential spectral problem. © 2011 Pleiades Publishing, Ltd. |
|
dc.relation.ispartofseries |
Differential Equations |
|
dc.title |
Approximation of positive semidefinite spectral problems |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
8 |
|
dc.relation.ispartofseries-volume |
47 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1188 |
|
dc.source.id |
SCOPUS00122661-2011-47-8-SID80054001329 |
|