dc.contributor.author | Dautov R. | |
dc.contributor.author | Mikheeva A. | |
dc.date.accessioned | 2018-09-18T20:03:08Z | |
dc.date.available | 2018-09-18T20:03:08Z | |
dc.date.issued | 2011 | |
dc.identifier.issn | 0012-2661 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/136073 | |
dc.description.abstract | For a triple {V, H, V*} of Hilbert spaces, we consider an evolution inclusion of the form u′(t)+A(t)u(t)+δφ{symbol}(t, u(t)) ∋f(t), u(0) = u0, t ∈ (0, T ], where A(t) and φ{symbol}(t, ·), t ∈ [0, T], are a family of nonlinear operators from V to V * and a family of convex lower semicontinuous functionals with common effective domain D(φ{symbol}) ⊂ V. We indicate conditions on the data under which there exists a unique solution of the problem in the space H1(0, T; V)∩W∞ 1 (0, T;H) and the implicit Euler method has first-order accuracy in the energy norm. © 2011 Pleiades Publishing, Ltd. | |
dc.relation.ispartofseries | Differential Equations | |
dc.title | Implicit Euler scheme for an abstract evolution inequality | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 8 | |
dc.relation.ispartofseries-volume | 47 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1130 | |
dc.source.id | SCOPUS00122661-2011-47-8-SID80053982257 |