Kazan Federal University Digital Repository

Implicit Euler scheme for an abstract evolution inequality

Show simple item record

dc.contributor.author Dautov R.
dc.contributor.author Mikheeva A.
dc.date.accessioned 2018-09-18T20:03:08Z
dc.date.available 2018-09-18T20:03:08Z
dc.date.issued 2011
dc.identifier.issn 0012-2661
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/136073
dc.description.abstract For a triple {V, H, V*} of Hilbert spaces, we consider an evolution inclusion of the form u′(t)+A(t)u(t)+δφ{symbol}(t, u(t)) ∋f(t), u(0) = u0, t ∈ (0, T ], where A(t) and φ{symbol}(t, ·), t ∈ [0, T], are a family of nonlinear operators from V to V * and a family of convex lower semicontinuous functionals with common effective domain D(φ{symbol}) ⊂ V. We indicate conditions on the data under which there exists a unique solution of the problem in the space H1(0, T; V)∩W∞ 1 (0, T;H) and the implicit Euler method has first-order accuracy in the energy norm. © 2011 Pleiades Publishing, Ltd.
dc.relation.ispartofseries Differential Equations
dc.title Implicit Euler scheme for an abstract evolution inequality
dc.type Article
dc.relation.ispartofseries-issue 8
dc.relation.ispartofseries-volume 47
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1130
dc.source.id SCOPUS00122661-2011-47-8-SID80053982257


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics