Показать сокращенную информацию
dc.contributor.author | Solov'ev S. | |
dc.date.accessioned | 2018-09-18T20:03:06Z | |
dc.date.available | 2018-09-18T20:03:06Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 0012-2661 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/136067 | |
dc.description.abstract | A variational eigenvalue problem in an infinite-dimensional Hilbert space is approximated by a problem in a finite-dimensional subspace. We analyze the convergence and accuracy of the approximate solutions. The general results are illustrated by a scheme of the finite element method with numerical integration for a one-dimensional second-order differential eigenvalue problem. For this approximation, we obtain optimal estimates for the accuracy of the approximate solutions. © 2010 Pleiades Publishing, Ltd. | |
dc.relation.ispartofseries | Differential Equations | |
dc.title | Approximation of Variational Eigenvalue Problems | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 7 | |
dc.relation.ispartofseries-volume | 46 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1030 | |
dc.source.id | SCOPUS00122661-2010-46-7-SID77955821334 |