Электронный архив

Analysis of stationary filtration problems with a multivalued law in the presence of several point sources

Показать сокращенную информацию

dc.contributor.author Badriev I.
dc.contributor.author Zadvornov O.
dc.date.accessioned 2018-09-18T20:02:56Z
dc.date.available 2018-09-18T20:02:56Z
dc.date.issued 2008
dc.identifier.issn 0012-2661
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/136056
dc.description.abstract We suggest a generalized statement of stationary filtration problems for an incompressible fluid obeying a multivalued filtration law with limit gradient in an arbitrary bounded nonone-dimensional domain in the presence of several point sources modeled by delta functions. The function determining the filtration law is assumed to grow linearly at infinity. The problems are stated in the form of an integral variational inequality of the second kind. We prove existence theorems and study the properties of solutions. To solve the problem, we suggest an iteration method whose each step essentially amounts to solving the Dirichlet problem for the Poisson equation. © 2008 MAIK Nauka.
dc.relation.ispartofseries Differential Equations
dc.title Analysis of stationary filtration problems with a multivalued law in the presence of several point sources
dc.type Article
dc.relation.ispartofseries-issue 7
dc.relation.ispartofseries-volume 44
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 960
dc.source.id SCOPUS00122661-2008-44-7-SID52949095398


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика