Показать сокращенную информацию
dc.contributor.author | Avkhadiev F. | |
dc.contributor.author | Pommerenke C. | |
dc.contributor.author | Wirths K. | |
dc.date.accessioned | 2018-09-18T20:02:52Z | |
dc.date.available | 2018-09-18T20:02:52Z | |
dc.date.issued | 2006 | |
dc.identifier.issn | 0010-2571 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/136048 | |
dc.description.abstract | Let D denote the open unit disc and let f: D → ℂ be holomorphic and injective in D. We further assume that f(D) is unbounded and ℂ \ f(D) is a convex domain. In this article, we consider the Taylor coefficients a n(f) of the normalized expansion f(z) = z + Σ n=2 ∞an(f)zn, z ∈ D, n=2 and we impose on such functions f the second normalization f(1) = ∞. We call these functions concave schlicht functions, as the image of D is a concave domain. We prove that the sharp inequalities |an(f)-n+1/2 ≤ n-1/2, n≥2, are valid. This settles a conjecture formulated in [2]. © Swiss Mathematical Society. | |
dc.relation.ispartofseries | Commentarii Mathematici Helvetici | |
dc.subject | Concave schlicht functions | |
dc.subject | Slit mappings | |
dc.subject | Taylor coefficients | |
dc.title | Sharp inequalities for the coefficients of concave schlicht functions | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 4 | |
dc.relation.ispartofseries-volume | 81 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 801 | |
dc.source.id | SCOPUS00102571-2006-81-4-SID33750913567 |