dc.contributor.author |
Avkhadiev F. |
|
dc.contributor.author |
Pommerenke C. |
|
dc.contributor.author |
Wirths K. |
|
dc.date.accessioned |
2018-09-18T20:02:52Z |
|
dc.date.available |
2018-09-18T20:02:52Z |
|
dc.date.issued |
2006 |
|
dc.identifier.issn |
0010-2571 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/136048 |
|
dc.description.abstract |
Let D denote the open unit disc and let f: D → ℂ be holomorphic and injective in D. We further assume that f(D) is unbounded and ℂ \ f(D) is a convex domain. In this article, we consider the Taylor coefficients a n(f) of the normalized expansion f(z) = z + Σ n=2 ∞an(f)zn, z ∈ D, n=2 and we impose on such functions f the second normalization f(1) = ∞. We call these functions concave schlicht functions, as the image of D is a concave domain. We prove that the sharp inequalities |an(f)-n+1/2 ≤ n-1/2, n≥2, are valid. This settles a conjecture formulated in [2]. © Swiss Mathematical Society. |
|
dc.relation.ispartofseries |
Commentarii Mathematici Helvetici |
|
dc.subject |
Concave schlicht functions |
|
dc.subject |
Slit mappings |
|
dc.subject |
Taylor coefficients |
|
dc.title |
Sharp inequalities for the coefficients of concave schlicht functions |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
4 |
|
dc.relation.ispartofseries-volume |
81 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
801 |
|
dc.source.id |
SCOPUS00102571-2006-81-4-SID33750913567 |
|