Показать сокращенную информацию
dc.contributor.author | Skryabin S. | |
dc.date.accessioned | 2018-09-18T20:01:16Z | |
dc.date.available | 2018-09-18T20:01:16Z | |
dc.date.issued | 2007 | |
dc.identifier.issn | 0002-9947 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135803 | |
dc.description.abstract | Let H be a Hopf algebra and A an H-simple right H-comodule algebra. It is shown that under certain hypotheses every (H,A)-Hopf module is either projective or free as an A-module and A is either a quasi-Frobenius or a semisimple ring. As an application it is proved that every weakly finite (in particular, every finite dimensional) Hopf algebra is free both as a left and a right module over its finite dimensional right coideal subalgebras, and the latter are Frobenius algebras. Similar results are obtained for H-simple H-module algebras. © 2007 American Mathematical Society. | |
dc.relation.ispartofseries | Transactions of the American Mathematical Society | |
dc.title | Projectivity and freeness over comodule algebras | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 6 | |
dc.relation.ispartofseries-volume | 359 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 2597 | |
dc.source.id | SCOPUS00029947-2007-359-6-SID34249280218 |