dc.contributor.author |
Skryabin S. |
|
dc.date.accessioned |
2018-09-18T20:01:16Z |
|
dc.date.available |
2018-09-18T20:01:16Z |
|
dc.date.issued |
2007 |
|
dc.identifier.issn |
0002-9947 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/135803 |
|
dc.description.abstract |
Let H be a Hopf algebra and A an H-simple right H-comodule algebra. It is shown that under certain hypotheses every (H,A)-Hopf module is either projective or free as an A-module and A is either a quasi-Frobenius or a semisimple ring. As an application it is proved that every weakly finite (in particular, every finite dimensional) Hopf algebra is free both as a left and a right module over its finite dimensional right coideal subalgebras, and the latter are Frobenius algebras. Similar results are obtained for H-simple H-module algebras. © 2007 American Mathematical Society. |
|
dc.relation.ispartofseries |
Transactions of the American Mathematical Society |
|
dc.title |
Projectivity and freeness over comodule algebras |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
6 |
|
dc.relation.ispartofseries-volume |
359 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
2597 |
|
dc.source.id |
SCOPUS00029947-2007-359-6-SID34249280218 |
|