Показать сокращенную информацию
dc.contributor.author | Koreshkov N. | |
dc.date.accessioned | 2018-09-18T20:01:05Z | |
dc.date.available | 2018-09-18T20:01:05Z | |
dc.date.issued | 2014 | |
dc.identifier.issn | 0001-4346 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135778 | |
dc.description.abstract | In the paper,we study algebras having n bilinearmultiplication operations [InlineMediaObject not available: see fulltext.]: A×A → A, s = 1, ..., n, such that (a[InlineMediaObject not available: see fulltext.]b) [InlineMediaObject not available: see fulltext.]c = a[InlineMediaObject not available: see fulltext.] (b[InlineMediaObject not available: see fulltext.]c), s, r = 1,..., n, a, b, c ∈ A. The radical of such an algebra is defined as the intersection of the annihilators of irreducible A-modules, and it is proved that the radical coincides with the intersection of the maximal right ideals each of which is s-regular for some operation [InlineMediaObject not available: see fulltext.]. This implies that the quotient algebra by the radical is semisimple. If an n-tuple algebra is Artinian, then the radical is nilpotent, and the semisimple Artinian n-tuple algebra is the direct sum of two-sided ideals each of which is a simple algebra. Moreover, in terms of sandwich algebras, we describe a finite-dimensional n-tuple algebra A, over an algebraically closed field, which is a simple A-module. © 2014 Pleiades Publishing, Ltd. | |
dc.relation.ispartofseries | Mathematical Notes | |
dc.subject | Artinian algebra | |
dc.subject | commutator algebra | |
dc.subject | n-tuple algebra | |
dc.subject | radical | |
dc.subject | sandwich algebra | |
dc.subject | semisimple algebra | |
dc.title | Associative n-Tuple algebras | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1-2 | |
dc.relation.ispartofseries-volume | 96 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 38 | |
dc.source.id | SCOPUS00014346-2014-96-1-2-SID84906490391 |