Показать сокращенную информацию
dc.contributor.author | Salakhudinov R. | |
dc.date.accessioned | 2018-09-18T20:01:03Z | |
dc.date.available | 2018-09-18T20:01:03Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0001-4346 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135774 | |
dc.description.abstract | Let u(z,G) be the classical warping function of a simply connected domain G. We prove that the L p-norms of the warping function with different exponents are related by a sharp isoperimetric inequality, including the functional u(G) = sup x∈Gu(x, G). A particular case of our result is the classical Payne inequality for the torsional rigidity of a domain. On the basis of the warping function, we construct a new physical functional possessing the isoperimetric monotonicity property. For a class of integrals depending on the warping function, we also obtain a priori estimates in terms of the L p-norms of the warping function as well as the functional u(G). In the proof, we use the estimation technique on level lines proposed by Payne. © 2012 Pleiades Publishing, Ltd. | |
dc.relation.ispartofseries | Mathematical Notes | |
dc.subject | isoperimetric inequality | |
dc.subject | isoperimetric monotonicity | |
dc.subject | level lines | |
dc.subject | Payne inequality | |
dc.subject | Schwartz symmetrization | |
dc.subject | torsional rigidity | |
dc.subject | warping function | |
dc.title | Integral properties of the classical warping function of a simply connected domain | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 3-4 | |
dc.relation.ispartofseries-volume | 92 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 412 | |
dc.source.id | SCOPUS00014346-2012-92-34-SID84867955057 |