Показать сокращенную информацию
dc.contributor.author | Kayumov I. | |
dc.date.accessioned | 2018-09-18T20:01:00Z | |
dc.date.available | 2018-09-18T20:01:00Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 0001-4346 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135767 | |
dc.description.abstract | We generalize a problem examined by Duren on the univalence of a family of n-symmetric functions generated by integrals of functions of the form exp(λζn). Our approach is based on the use of the inverse Faber transform, of the Martio-Sarvas univalence criterion, and of the λ-lemma of Ma né, Sad, and Sullivan. We also put forward a conjecture on the univalence of a family of n-symmetric functions, which is a weakened form of the Danikas-Ruscheweyh conjecture on the univalence of an integral transform of holomorphic functions. © 2010 Pleiades Publishing, Ltd. | |
dc.relation.ispartofseries | Mathematical Notes | |
dc.subject | Danikas-Ruscheweyh conjecture | |
dc.subject | Domain with quasiconformal boundary | |
dc.subject | Holomorphic function | |
dc.subject | Inverse Faber transform | |
dc.subject | n-symmetric function | |
dc.title | On holomorphic motions of n-symmetric functions | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 5-6 | |
dc.relation.ispartofseries-volume | 87 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 828 | |
dc.source.id | SCOPUS00014346-2010-87-56-SID77954389649 |