dc.contributor.author |
Kayumov I. |
|
dc.date.accessioned |
2018-09-18T20:01:00Z |
|
dc.date.available |
2018-09-18T20:01:00Z |
|
dc.date.issued |
2010 |
|
dc.identifier.issn |
0001-4346 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/135767 |
|
dc.description.abstract |
We generalize a problem examined by Duren on the univalence of a family of n-symmetric functions generated by integrals of functions of the form exp(λζn). Our approach is based on the use of the inverse Faber transform, of the Martio-Sarvas univalence criterion, and of the λ-lemma of Ma né, Sad, and Sullivan. We also put forward a conjecture on the univalence of a family of n-symmetric functions, which is a weakened form of the Danikas-Ruscheweyh conjecture on the univalence of an integral transform of holomorphic functions. © 2010 Pleiades Publishing, Ltd. |
|
dc.relation.ispartofseries |
Mathematical Notes |
|
dc.subject |
Danikas-Ruscheweyh conjecture |
|
dc.subject |
Domain with quasiconformal boundary |
|
dc.subject |
Holomorphic function |
|
dc.subject |
Inverse Faber transform |
|
dc.subject |
n-symmetric function |
|
dc.title |
On holomorphic motions of n-symmetric functions |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
5-6 |
|
dc.relation.ispartofseries-volume |
87 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
828 |
|
dc.source.id |
SCOPUS00014346-2010-87-56-SID77954389649 |
|