Показать сокращенную информацию
dc.contributor.author | Fedotov A. | |
dc.date.accessioned | 2018-09-18T20:00:55Z | |
dc.date.available | 2018-09-18T20:00:55Z | |
dc.date.issued | 2007 | |
dc.identifier.issn | 0001-4346 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135759 | |
dc.description.abstract | We obtain an estimate of the norm of the Lagrange interpolation operator in a multidimensional Sobolev space. It is shown that, under a suitable choice of the sequence of multi-indices, interpolation polynomials converge to the interpolated function and their rate of convergence is of the order of the best approximation of this function. © Nauka/Interperiodica 2007. | |
dc.relation.ispartofseries | Mathematical Notes | |
dc.subject | Best approximation | |
dc.subject | Hilbert space | |
dc.subject | Interpolation polynomial | |
dc.subject | Lagrange interpolation operator | |
dc.subject | Rate of convergence | |
dc.subject | Riemann zeta function | |
dc.subject | Sobolev space | |
dc.title | Estimate of the norm of the Lagrange interpolation operator in a multidimensional Sobolev space | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 3-4 | |
dc.relation.ispartofseries-volume | 81 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 373 | |
dc.source.id | SCOPUS00014346-2007-81-34-SID34248385583 |