dc.contributor.author |
Fedotov A. |
|
dc.date.accessioned |
2018-09-18T20:00:55Z |
|
dc.date.available |
2018-09-18T20:00:55Z |
|
dc.date.issued |
2007 |
|
dc.identifier.issn |
0001-4346 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/135759 |
|
dc.description.abstract |
We obtain an estimate of the norm of the Lagrange interpolation operator in a multidimensional Sobolev space. It is shown that, under a suitable choice of the sequence of multi-indices, interpolation polynomials converge to the interpolated function and their rate of convergence is of the order of the best approximation of this function. © Nauka/Interperiodica 2007. |
|
dc.relation.ispartofseries |
Mathematical Notes |
|
dc.subject |
Best approximation |
|
dc.subject |
Hilbert space |
|
dc.subject |
Interpolation polynomial |
|
dc.subject |
Lagrange interpolation operator |
|
dc.subject |
Rate of convergence |
|
dc.subject |
Riemann zeta function |
|
dc.subject |
Sobolev space |
|
dc.title |
Estimate of the norm of the Lagrange interpolation operator in a multidimensional Sobolev space |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
3-4 |
|
dc.relation.ispartofseries-volume |
81 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
373 |
|
dc.source.id |
SCOPUS00014346-2007-81-34-SID34248385583 |
|