Электронный архив

Hierarchical multispectral image classification based on self organized maps

Показать сокращенную информацию

dc.contributor.author Saveliev A.
dc.contributor.author Dobrinin D.
dc.date.accessioned 2018-09-17T21:59:39Z
dc.date.available 2018-09-17T21:59:39Z
dc.date.issued 1999
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/135696
dc.description.abstract One of the problems in the thematic interpretation of the remote sensor (RS) data is the processing of the sets of multispectral, multydate images. The problem is that when we try to compare two and more RS image, we have to rectify their geometry and correct atmospheric effects. While the geometric correction could be done with any precision, the atmospheric correction for a set of images is a very complex task, and it could not be solved in a common case. We propose a new approach, based on the artificial neural networks, for a stable RS images classification and interpretation without the atmospheric correction. That approach, using the Kohonen's Self-Organized Maps (SOM), has been realized as a part of the ScanEx image processing technology in a computer program NeRIS (Neural Raster Interpretation System). The Sammon's mapping of that SOM classification from the p-dimensional input image space to the 2-dimensional points on a plane (whereby the distances between the mapped vectors tend to approximate to distances of the input vectors), was used for hierarchical classification and stable thematic interpretation of the RS images.
dc.title Hierarchical multispectral image classification based on self organized maps
dc.type Conference Paper
dc.relation.ispartofseries-volume 5
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 2510
dc.source.id SCOPUS-1999-5-SID0033316123


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика