Показать сокращенную информацию
dc.contributor.author | Igudesman K. | |
dc.date.accessioned | 2018-09-17T21:58:56Z | |
dc.date.available | 2018-09-17T21:58:56Z | |
dc.date.issued | 2005 | |
dc.identifier.issn | 1995-0802 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135680 | |
dc.description.abstract | We consider a transformation of a normalized measure space such that the image of any point is a finite set. We call such a transformation an m-transformation. In this case the orbit of any point looks like a tree. In the study of m-transformations we are interested in the properties of the trees. An m-transformation generates a stochastic kernel and a new measure. Using these objects, we introduce analogies of some main concept of ergodic theory: ergodicity, Koopman and Frobenius-Perron operators etc. We prove ergodic theorems and consider examples. We also indicate possible applications to fractal geometry and give a generalization of our construction. | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.subject | Dynamic system | |
dc.subject | Ergodic theory | |
dc.subject | Self-similar set | |
dc.title | Dynamics of finite-multivalued transformations | |
dc.type | Article | |
dc.relation.ispartofseries-volume | 17 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 47 | |
dc.source.id | SCOPUS19950802-2005-17-SID22744432814 |