Kazan Federal University Digital Repository

A note on minimal and maximal ideals of ordered semigroups

Show simple item record

dc.contributor.author Arslanov M.
dc.contributor.author Kehayopulu N.
dc.date.accessioned 2018-09-17T21:58:27Z
dc.date.available 2018-09-17T21:58:27Z
dc.date.issued 2002
dc.identifier.issn 1995-0802
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/135669
dc.description.abstract Ideals of ordered groupoids were defined by second author in [2]. Considering the question under what conditions an ordered semigroup (or semigroup) contains at most one maximal ideal we prove that in an ordered groupoid S without zero there is at most one minimal ideal which is the intersection of all ideals of S. In an ordered semigroup, for which there exists an element a ∈ S such that the ideal of S generated by a is S, there is at most one maximal ideal which is the union of all proper ideals of S. In ordered semigroups containing unit, there is at most one maximal ideal which is the union of all proper ideals of S.
dc.relation.ispartofseries Lobachevskii Journal of Mathematics
dc.title A note on minimal and maximal ideals of ordered semigroups
dc.type Article
dc.relation.ispartofseries-volume 11
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 3
dc.source.id SCOPUS19950802-2002-11-SID4444257827


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics