Показать сокращенную информацию
dc.contributor.author | Kazantsev A. | |
dc.date.accessioned | 2018-09-17T21:57:51Z | |
dc.date.available | 2018-09-17T21:57:51Z | |
dc.date.issued | 2001 | |
dc.identifier.issn | 1995-0802 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135660 | |
dc.description.abstract | We give a new proof of a theorem, which is originally due to Gehring and Pommerenke on the triviality of the extrema set Mf of the inner mapping radius |f′(ζ)|(1 - |ζ|2) over the unit disk in the plane, where the Riemann mapping function f satisfies the well-known Nehari univalence criterion. Our main tool is the local bifurcation research of Mf for the level set parametrization fr(ζ) = f(rζ), r > 0. | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.title | On a problem of Polya and Szegö | |
dc.type | Article | |
dc.relation.ispartofseries-volume | 9 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 37 | |
dc.source.id | SCOPUS19950802-2001-9-SID4444282283 |