dc.contributor.author |
Kazantsev A. |
|
dc.date.accessioned |
2018-09-17T21:57:51Z |
|
dc.date.available |
2018-09-17T21:57:51Z |
|
dc.date.issued |
2001 |
|
dc.identifier.issn |
1995-0802 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/135660 |
|
dc.description.abstract |
We give a new proof of a theorem, which is originally due to Gehring and Pommerenke on the triviality of the extrema set Mf of the inner mapping radius |f′(ζ)|(1 - |ζ|2) over the unit disk in the plane, where the Riemann mapping function f satisfies the well-known Nehari univalence criterion. Our main tool is the local bifurcation research of Mf for the level set parametrization fr(ζ) = f(rζ), r > 0. |
|
dc.relation.ispartofseries |
Lobachevskii Journal of Mathematics |
|
dc.title |
On a problem of Polya and Szegö |
|
dc.type |
Article |
|
dc.relation.ispartofseries-volume |
9 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
37 |
|
dc.source.id |
SCOPUS19950802-2001-9-SID4444282283 |
|