Показать сокращенную информацию
dc.contributor.author | Malakhaltsev M. | |
dc.date.accessioned | 2018-09-17T21:57:28Z | |
dc.date.available | 2018-09-17T21:57:28Z | |
dc.date.issued | 1999 | |
dc.identifier.issn | 1995-0802 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135652 | |
dc.description.abstract | In [1], J.F. Pommaret constructed the so-called Spencer P-complex for a differential operator. Applying this construction to the Lie derivative associated with a general pseudogroup structure on a smooth manifold, he defined the deformation cohomology of a pseudogroup structure. The aim of this paper is to specify this complex for a particular case of pseudogroup structure, namely, for a first-order G-structure, and to express this complex in differential geometric form, i.e., in terms of tensor fields and the covariant derivative. We show that the Pommaret construction provides a powerful tool for associating a differential complex to a G-structure. In a unified way one can obtain the Dolbeaut complex for the complex structure, the Vaisman complex for the foliation structure [2], and the Vaisman-Molino cohomology for the structure of manifold over an algebra [3]. | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.title | The lie derivative and cohomology of G-structures | |
dc.type | Conference Paper | |
dc.relation.ispartofseries-volume | 3 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 197 | |
dc.source.id | SCOPUS19950802-1999-3-SID4344569700 |