Показать сокращенную информацию
dc.contributor.author | Avkhadiev F. | |
dc.contributor.author | Wirths K. | |
dc.date.accessioned | 2018-09-17T21:54:13Z | |
dc.date.available | 2018-09-17T21:54:13Z | |
dc.date.issued | 2004 | |
dc.identifier.issn | 0046-5755 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135582 | |
dc.description.abstract | Let Ω and Π be two hyperbolic simply connected domains in the extended complex plane C̄ = C ∪ {∞}. We derive sharp upper bounds for the modulus of the nth derivative of a holomorphic, resp. meromorphic function f: Ω → Π at a point z0 εΩ. The bounds depend on the densities λΩ and λΠ of the Poincaré metrics and on the hyperbolic distances of the points z0 and f(z0) to the point ∞. | |
dc.relation.ispartofseries | Geometriae Dedicata | |
dc.subject | Derivatives | |
dc.subject | Holomorphic function | |
dc.subject | Hyperbolic distance | |
dc.subject | Poincaré metric | |
dc.title | Schwarz-Pick inequalities for hyperbolic domains in the extended plane | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 106 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1 | |
dc.source.id | SCOPUS00465755-2004-106-1-SID3142759600 |