dc.contributor.author |
Avkhadiev F. |
|
dc.contributor.author |
Wirths K. |
|
dc.date.accessioned |
2018-09-17T21:54:13Z |
|
dc.date.available |
2018-09-17T21:54:13Z |
|
dc.date.issued |
2004 |
|
dc.identifier.issn |
0046-5755 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/135582 |
|
dc.description.abstract |
Let Ω and Π be two hyperbolic simply connected domains in the extended complex plane C̄ = C ∪ {∞}. We derive sharp upper bounds for the modulus of the nth derivative of a holomorphic, resp. meromorphic function f: Ω → Π at a point z0 εΩ. The bounds depend on the densities λΩ and λΠ of the Poincaré metrics and on the hyperbolic distances of the points z0 and f(z0) to the point ∞. |
|
dc.relation.ispartofseries |
Geometriae Dedicata |
|
dc.subject |
Derivatives |
|
dc.subject |
Holomorphic function |
|
dc.subject |
Hyperbolic distance |
|
dc.subject |
Poincaré metric |
|
dc.title |
Schwarz-Pick inequalities for hyperbolic domains in the extended plane |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
1 |
|
dc.relation.ispartofseries-volume |
106 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
1 |
|
dc.source.id |
SCOPUS00465755-2004-106-1-SID3142759600 |
|