Показать сокращенную информацию
dc.contributor.author | Hu T. | |
dc.contributor.author | Li D. | |
dc.contributor.author | Rosalsky A. | |
dc.contributor.author | Volodin A. | |
dc.date.accessioned | 2018-09-17T21:51:23Z | |
dc.date.available | 2018-09-17T21:51:23Z | |
dc.date.issued | 2003 | |
dc.identifier.issn | 0040-585X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135523 | |
dc.description.abstract | By applying a recent result of Hu et al. [Stochastic Anal. Appl., 17 (1999), pp. 963-992], we extend and generalize the complete convergence results of Pruitt [J. Math. Mech., 15 (1966), pp. 769-776] and Rohatgi [Proc. Cambridge Philos. Soc., 69 (1971), pp. 305-307] to arrays of row-wise independent Danach space valued random elements. No assumptions are made concerning the geometry of the underlying Banach space. Illustrative examples are provided comparing the various results. | |
dc.relation.ispartofseries | Theory of Probability and its Applications | |
dc.subject | Almost sure convergence | |
dc.subject | Array of Banach space valued random elements | |
dc.subject | Complete convergence | |
dc.subject | Rate of convergence | |
dc.subject | Row-wise independence | |
dc.subject | Weighted sums | |
dc.title | On the rate of complete convergence for weighted sums of arrays of banach space valued random elements | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 3 | |
dc.relation.ispartofseries-volume | 47 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 455 | |
dc.source.id | SCOPUS0040585X-2003-47-3-SID0141429922 |