Показать сокращенную информацию
dc.contributor.author | Pushkin L. | |
dc.date.accessioned | 2018-09-17T21:51:18Z | |
dc.date.available | 2018-09-17T21:51:18Z | |
dc.date.issued | 1996 | |
dc.identifier.issn | 0040-585X | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135521 | |
dc.description.abstract | Let ξ1,ξ2,. . . be a random sequence of r-ary digits, r ∈ N\{1}, connected into an ergodic Markov chain. Let β > 1 be an algebraic number such that the ratio log β/log r is irrational. Then with probability one, the number ξ= ∑∞ j=1 ξjr-j is normal with respect to the radix β. The proof is based on the Gelfand-Baker estimate for the absolute value of a linear form in the logarithms of algebraic numbers. | |
dc.relation.ispartofseries | Theory of Probability and its Applications | |
dc.subject | Cassels-Schmidt theorem | |
dc.subject | Finite Markov chains | |
dc.subject | Gelfand-Baker's theory | |
dc.subject | Normal numbers | |
dc.subject | The estimates for the characteristic functions of singular distributions | |
dc.title | Ergodic properties of sets defined by the frequencies of digits | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 3 | |
dc.relation.ispartofseries-volume | 41 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 593 | |
dc.source.id | SCOPUS0040585X-1996-41-3-SID0030336885 |