dc.contributor.author |
Pushkin L. |
|
dc.date.accessioned |
2018-09-17T21:51:18Z |
|
dc.date.available |
2018-09-17T21:51:18Z |
|
dc.date.issued |
1996 |
|
dc.identifier.issn |
0040-585X |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/135521 |
|
dc.description.abstract |
Let ξ1,ξ2,. . . be a random sequence of r-ary digits, r ∈ N\{1}, connected into an ergodic Markov chain. Let β > 1 be an algebraic number such that the ratio log β/log r is irrational. Then with probability one, the number ξ= ∑∞ j=1 ξjr-j is normal with respect to the radix β. The proof is based on the Gelfand-Baker estimate for the absolute value of a linear form in the logarithms of algebraic numbers. |
|
dc.relation.ispartofseries |
Theory of Probability and its Applications |
|
dc.subject |
Cassels-Schmidt theorem |
|
dc.subject |
Finite Markov chains |
|
dc.subject |
Gelfand-Baker's theory |
|
dc.subject |
Normal numbers |
|
dc.subject |
The estimates for the characteristic functions of singular distributions |
|
dc.title |
Ergodic properties of sets defined by the frequencies of digits |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
3 |
|
dc.relation.ispartofseries-volume |
41 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.relation.startpage |
593 |
|
dc.source.id |
SCOPUS0040585X-1996-41-3-SID0030336885 |
|