Показать сокращенную информацию
dc.contributor.author | Kayumov I. | |
dc.contributor.author | Obnosov Y. | |
dc.date.accessioned | 2018-09-17T21:47:33Z | |
dc.date.available | 2018-09-17T21:47:33Z | |
dc.date.issued | 2005 | |
dc.identifier.issn | 0037-4466 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/135442 | |
dc.description.abstract | We prove the Mejia-Pommerenke conjecture that the Taylor coefficients of hyperbolically convex functions in the disk behave like O(log-2(n)/n) as n → ∞ assuming that the image of the unit disk under such functions is a domain of bounded boundary rotation. Moreover, we obtain some asymptotically sharp estimates for the integral means of the derivatives of such functions and consider an example of a hyperbolically convex function that maps the unit disk onto a domain of infinite boundary rotation. © 2005 Springer Science+Business Media, Inc. | |
dc.relation.ispartofseries | Siberian Mathematical Journal | |
dc.subject | Conformal mapping | |
dc.subject | Hyperbolically convex function | |
dc.subject | Integral means | |
dc.subject | Univalent function | |
dc.title | Estimates for integral means of hyperbolically convex functions | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 6 | |
dc.relation.ispartofseries-volume | 46 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 1062 | |
dc.source.id | SCOPUS00374466-2005-46-6-SID28644450477 |