Электронный архив

Estimates for integral means of hyperbolically convex functions

Показать сокращенную информацию

dc.contributor.author Kayumov I.
dc.contributor.author Obnosov Y.
dc.date.accessioned 2018-09-17T21:47:33Z
dc.date.available 2018-09-17T21:47:33Z
dc.date.issued 2005
dc.identifier.issn 0037-4466
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/135442
dc.description.abstract We prove the Mejia-Pommerenke conjecture that the Taylor coefficients of hyperbolically convex functions in the disk behave like O(log-2(n)/n) as n → ∞ assuming that the image of the unit disk under such functions is a domain of bounded boundary rotation. Moreover, we obtain some asymptotically sharp estimates for the integral means of the derivatives of such functions and consider an example of a hyperbolically convex function that maps the unit disk onto a domain of infinite boundary rotation. © 2005 Springer Science+Business Media, Inc.
dc.relation.ispartofseries Siberian Mathematical Journal
dc.subject Conformal mapping
dc.subject Hyperbolically convex function
dc.subject Integral means
dc.subject Univalent function
dc.title Estimates for integral means of hyperbolically convex functions
dc.type Article
dc.relation.ispartofseries-issue 6
dc.relation.ispartofseries-volume 46
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 1062
dc.source.id SCOPUS00374466-2005-46-6-SID28644450477


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика